2,920 research outputs found

    Nanoscale Quantum Calorimetry with Electronic Temperature Fluctuations

    Full text link
    Motivated by the recent development of fast and ultra-sensitive thermometry in nanoscale systems, we investigate quantum calorimetric detection of individual heat pulses in the sub-meV energy range. We propose a hybrid superconducting injector-calorimeter set-up, with the energy of injected pulses carried by tunneling electrons. Treating all heat transfer events microscopically, we analyse the statistics of the calorimeter temperature fluctuations and derive conditions for an accurate measurement of the heat pulse energies. Our results pave the way for novel, fundamental quantum thermodynamics experiments, including calorimetric detection of single microwave photons.Comment: 6 pages, 3 figures plus supplemental material, 8 pages, 1 figur

    Presence or absence of analytic structure in maximal ideal spaces

    Full text link
    We study extensions of Wermer's maximality theorem to several complex variables. We exhibit various smoothly embedded manifolds in complex Euclidean space whose hulls are non-trivial but contain no analytic disks. We answer a question posed by Lee Stout concerning the existence of analytic structure for a uniform algebra whose maximal ideal space is a manifold.Comment: Comments are welcome

    Experimental verification of reciprocity relations in quantum thermoelectric transport

    Get PDF
    Symmetry relations are manifestations of fundamental principles and constitute cornerstones of modern physics. An example are the Onsager relations between coefficients connecting thermodynamic fluxes and forces, central to transport theory and experiments. Initially formulated for classical systems, these reciprocity relations are also fulfilled in quantum conductors. Surprisingly, novel relations have been predicted specifically for thermoelectric transport. However, whereas these thermoelectric reciprocity relations have to date not been verified, they have been predicted to be sensitive to inelastic scattering, always present at finite temperature. The question whether the relations exist in practice is important for thermoelectricity: whereas their existence may simplify the theory of complex thermoelectric materials, their absence has been shown to enable, in principle, higher thermoelectric energy conversion efficiency for a given material quality. Here we experimentally verify the thermoelectric reciprocity relations in a four-terminal mesoscopic device where each terminal can be electrically and thermally biased, individually. The linear response thermoelectric coefficients are found to be symmetric under simultaneous reversal of magnetic field and exchange of injection and emission contacts. Intriguingly, we also observe the breakdown of the reciprocity relations as a function of increasing thermal bias. Our measurements thus clearly establish the existence of the thermoelectric reciprocity relations, as well as the possibility to control their breakdown with the potential to enhance thermoelectric performanceComment: 7 pages, 5 figure

    Useful ‘junk': Alu RNAs in the human transcriptome

    Get PDF
    Abstract.: Alu elements are the most abundant repetitive elements in the human genome; they have amplified by retrotransposition to reach the present number of more than one million copies. Alu elements can be transcribed in two different ways, by two independent polymerases. ‘Free Alu RNAs' are transcribed by Pol III from their own promoter, while ‘embedded Alu RNAs' are transcribed by Pol II as part of protein- and non-protein-coding RNAs. Recent studies have demonstrated that both free and embedded Alu RNAs play a major role in post transcriptional regulation of gene expression, for example by affecting protein translation, alternative splicing and mRNA stability. These discoveries illustrate how a part of the ‘junk DNA' content of the human genome has been recruited to important functions in regulation of gene expressio

    Codebook-based Bayesian speech enhancement for nonstationary environments

    Get PDF
    In this paper, we propose a Bayesian minimum mean squared error approach for the joint estimation of the short-term predictor parameters of speech and noise, from the noisy observation. We use trained codebooks of speech and noise linear predictive coefficients to model the a priori information required by the Bayesian scheme. In contrast to current Bayesian estimation approaches that consider the excitation variances as part of the a priori information, in the proposed method they are computed online for each short-time segment, based on the observation at hand. Consequently, the method performs well in nonstationary noise conditions. The resulting estimates of the speech and noise spectra can be used in a Wiener filter or any state-of-the-art speech enhancement system. We develop both memoryless (using information from the current frame alone) and memory-based (using information from the current and previous frames) estimators. Estimation of functions of the short-term predictor parameters is also addressed, in particular one that leads to the minimum mean squared error estimate of the clean speech signal. Experiments indicate that the scheme proposed in this paper performs significantly better than competing method

    Quantum state tomography with quantum shotnoise

    Full text link
    We propose a scheme for a complete reconstruction of one- and two-particle orbital quantum states in mesoscopic conductors. The conductor in the transport state continuously emits orbital quantum states. The orbital states are manipulated by electronic beamsplitters and detected by measurements of average currents and zero frequency current shotnoise correlators. We show how, by a suitable complete set of measurements, the elements of the density matrices of the one- and two-particle states can be directly expressed in terms of the currents and current correlators.Comment: 4 pages, 2 figure

    Orbital entanglement and violation of Bell inequalities in mesoscopic conductors

    Full text link
    We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross-correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.Comment: 4 pages, 2 figure

    Quantum pump driven fermionic Mach-Zehnder interferometer

    Full text link
    We have investigated the characteristics of the currents in a pump-driven fermionic Mach-Zehnder interferometer. The system is implemented in a conductor in the quantum Hall regime, with the two interferometer arms enclosing an Aharonov-Bohm flux Φ\Phi. Two quantum point contacts with transparency modulated periodically in time drive the current and act as beam-splitters. The current has a flux dependent part I(Φ)I^{(\Phi)} as well as a flux independent part I(0)I^{(0)}. Both current parts show oscillations as a function of frequency on the two scales determined by the lengths of the interferometer arms. In the non-adiabatic, high frequency regime I(Φ)I^{(\Phi)} oscillates with a constant amplitude while the amplitude of the oscillations of I(0)I^{(0)} increases linearly with frequency. The flux independent part I(0)I^{(0)} is insensitive to temperature while the flux dependent part I(Φ)I^{(\Phi)} is exponentially suppressed with increasing temperature. We also find that for low amplitude, adiabatic pumping rectification effects are absent for semitransparent beam-splitters. Inelastic dephasing is introduced by coupling one of the interferometer arms to a voltage probe. For a long charge relaxation time of the voltage probe, giving a constant probe potential, I(Φ)I^{(\Phi)} and the part of I(0)I^{(0)} flowing in the arm connected to the probe are suppressed with increased coupling to the probe. For a short relaxation time, with the potential of the probe adjusting instantaneously to give zero time dependent current at the probe, only I(Φ)I^{(\Phi)} is suppressed by the coupling to the probe.Comment: 10 pages, 4 figure

    Electrical current noise of a beam splitter as a test of spin-entanglement

    Full text link
    We investigate the spin entanglement in the superconductor-quantum dot system proposed by Recher, Sukhorukov and Loss, coupling it to an electronic beam-splitter. The superconductor-quantum dot entangler and the beam-splitter are treated within a unified framework and the entanglement is detected via current correlations. The state emitted by the entangler is found to be a linear superposition of non-local spin-singlets at different energies, a spin-entangled two-particle wavepacket. Colliding the two electrons in the beam-splitter, the singlet spin-state gives rise to a bunching behavior, detectable via the current correlators. The amount of bunching depends on the relative positions of the single particle levels in the quantum dots and the scattering amplitudes of the beam-splitter. The singlet spin entanglement, insensitive to orbital dephasing but suppressed by spin dephasing, is conveniently quantified via the Fano factors. It is found that the entanglement-dependent contribution to the Fano factor is of the same magnitude as the non-entangled, making an experimental detection feasible. A detailed comparison between the current correlations of the non-local spin-singlet state and other states, possibly emitted by the entangler, is performed. This provides conditions for an unambiguous identification of the non-local singlet spin entanglement.Comment: 13 pages, 8 figures, section on quantification of entanglement adde
    • …
    corecore